Does adult fracture repair recapitulate embryonic skeletal formation?

نویسندگان

  • Cristin Ferguson
  • Eytan Alpern
  • Theodore Miclau
  • Jill A Helms
چکیده

Bone formation is a continuous process that begins during fetal development and persists throughout life as a remodeling process. In the event of injury, bones heal by generating new bone rather than scar tissue; thus, it can accurately be described as a regenerative process. To elucidate the extent to which fetal skeletal development and skeletal regeneration are similar, we performed a series of detailed expression analyses using a number of genes that regulate key stages of endochondral ossification. They included genes in the indian hedgehog (ihh) and core binding factor 1 (cbfa1) pathways, and genes associated with extracellular matrix remodeling and vascular invasion including vascular endothelial growth factor (VEGF) and matrix metalloproteinase 13 (mmp13). Our analyses suggested that even at the earliest stages of mesenchymal cell condensation, chondrocyte (ihh, cbfa1 and collagen type II-positive) and perichondrial (gli1 and osteocalcin-positive) cell populations were already specified. As chondrocytes matured, they continued to express cbfa1 and ihh whereas cbfa1, osteocalcin and gli1 persisted in presumptive periosteal cells. Later, VEGF and mmp13 transcripts were abundant in chondrocytes as they underwent hypertrophy and terminal differentiation. Based on these expression patterns and available genetic data, we propose a model where Ihh and Cbfa1, together with Gli1 and Osteocalcin participate in establishing reciprocal signal site of injury. The persistence of cbfa1 and ihh, and their targets osteocalcin and gli1, in the callus suggests comparable processes of chondrocyte maturation and specification of a neo-perichondrium occur following injury. VEGF and mmp13 are expressed during the later stages of healing, coincident with the onset of vascularization of the callus and subsequent ossification. Taken together, these data suggest the genetic mechanisms regulating fetal skeletogenesis also regulate adult skeletal regeneration, and point to important regulators of angiogenesis and ossification in bone regeneration.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of Chondrocyte Differentiation by Neural Factors from Sympathetic and Sensory Nerve Fibres

INTRODUCTION Fracture repair constitutes the sequence of cell biological events following bone injury and recapitulates the steps of endochondral ossification observed during embryonic skeletal development and growth. Because of the different phases of fracture healing (inflammation, cartilage formation and remodeling) the fracture callus provides an excellent tool for analysis of cartilage and...

متن کامل

Altered fracture repair in the absence of MMP9.

The regeneration of adult skeletal tissues requires the timely recruitment of skeletal progenitor cells to an injury site, the differentiation of these cells into bone or cartilage, and the re-establishment of a vascular network to maintain cell viability. Disturbances in any of these cellular events can have a detrimental effect on the process of skeletal repair. Although fracture repair has b...

متن کامل

Role of Wnt signaling in fracture healing

The Wnt signaling pathway is well known to play major roles in skeletal development and homeostasis. In certain aspects, fracture repair mimics the process of bone embryonic development. Thus, the importance of Wnt signaling in fracture healing has become more apparent in recent years. Here, we summarize recent research progress in the area, which may be conducive to the development of Wnt-base...

متن کامل

Loss of myogenin in postnatal life leads to normal skeletal muscle but reduced body size.

Although the mechanisms regulating the formation of embryonic skeletal muscle in vertebrates are well characterized, less is known about postnatal muscle formation even though the largest increases in skeletal muscle mass occur after birth. Adult muscle stem cells (satellite cells) appear to recapitulate the events that occur in embryonic myoblasts. In particular, the myogenic basic helix-loop-...

متن کامل

Transcriptional Analysis of Fracture Healing and the Induction of Embryonic Stem Cell–Related Genes

Fractures are among the most common human traumas. Fracture healing represents a unique temporarily definable post-natal process in which to study the complex interactions of multiple molecular events that regulate endochondral skeletal tissue formation. Because of the regenerative nature of fracture healing, it is hypothesized that large numbers of post-natal stem cells are recruited and contr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Mechanisms of Development

دوره 87  شماره 

صفحات  -

تاریخ انتشار 1999